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1
METHODS, APPARATUS, AND COMPUTER
PROGRAM PRODUCTS FOR QUANTUM
SEARCHING FOR MULTIPLE SEARCH
TARGETS

BACKGROUND OF THE INVENTION

The present application relates generally to computing
apparatus, methods and computer program products and,
more particularly, to quantum computing apparatus, methods
and computer program products.

Many software engineering tasks can be attacked as search
problems. For example, a test generator searches for sets of
inputs that result in branches or paths being covered, a finite
state machine (FSM) verifier searches for inputs that lead to
states where a given property is violated, and a synthesis tool
searches for compositions of library components that have a
specified behavior. Techniques and tools attacking software
engineering problems have employed myriad search tech-
niques, from simple exhaustive search through sophisticated
heuristic searches, on sequential, parallel, and distributed
platforms. While much progress has been made, and many
such tools are used in practice today, these problems are
NP-hard or worse and conventional tools may not solve such
problems reliably. That is, while many current tools can do
better than systematic brute force or random searches on
some (or many) problems, they may be either heuristic or
targeted at narrow sub-domains. Consequently, scaling
remains a challenge in software engineering, due to the
underlying problem complexity.

Quantum computing exploits the quantum mechanical
phenomena of state entanglement and quantum interference
to enable a very large number of computations to occur con-
currently, with results discovered at the end through observa-
tion. Unfortunately, while it may be relatively straightforward
to set up exponentially many quantumparallel computations,
it may be much more difficult to read out the desired results
reliably. As a result, with the exception of a few relatively
narrow problem types, such as simulating, physics and fac-
toring an integer, it appears that the best speedup achievable is
quadratic. Thatis, where a classical search algorithm requires
n steps, there may be a quantum variant requiring only OVN
steps. This may be achieved using the approach discovered by
L. Grover in 1996, referred to as Grover’s Search (GS) Algo-
rithm. Such a speedup could have a major impact on practice,
bringing spaces much too large for today’s tools (e.g. 2%*
states) into the reach (22 effort) of tomorrow’s search tools.

SUMMARY

It should be appreciated that this Summary is provided to
introduce a selection of concepts in a simplified form, the
concepts being further described below in the Detailed
Description. This Summary is not intended to identify key
features or essential features of this disclosure, nor is it
intended to limit the scope of the invention.

Some embodiments of the present invention provide quan-
tum search methods. A first iterative Grover Search process is
performed by causing at least one quantum computer to per-
form a first series of Grover Searches according to a charac-
teristic function for varying numbers of iterations to identify
a first search target. The characteristic function is modified
according to the identified first search target. A second itera-
tive Grover Search process is performed by causing the at
least one quantum computer to perform a second series of
Grover Searches according to the modified characteristic
function beginning with a number of iterations determined

25

30

40

45

50

55

60

2

based on a number of iterations required for at least one prior
iterative Grover Search process to identify a second search
target.

In some embodiments, performing the first iterative Grover
Search process includes identifying a first number of itera-
tions performed to identify the first search target, and per-
forming the second iterative Grover Search process includes
causing the at least one quantum computer to perform the
second series of Grover Searches beginning with the identi-
fied first number of iterations. In some embodiments, per-
forming a second iterative Grover Search process includes
causing the at least one quantum computer to perform the
second series of Grover Searches beginning with a number
iterations determined based on a minimum number of itera-
tions among numbers of iterations performed to identify
respective search targets for a plurality of preceding Grover
Search processes. In further embodiments, performing a sec-
ond iterative Grover Search process further includes causing
the atleast one quantum computer to perform a Grover Search
using a reinitialized number of iterations responsive to failure
to find a search target after reaching a predetermined bound
on a number of iterations.

In some embodiments, each of the first and second iterative
Grover Search processes may use incrementally increasing
and/or decreasing numbers of iterations for each succeeding
Grover Search. In further embodiments, each of the first and
second iterative Grover Search processes use numbers of
iterations that vary according to a predetermined function for
each succeeding Grover Search. The search for multiple tar-
gets may be terminated responsive to a total number of Grover
Search iterations meeting a predetermined criterion.

Further embodiments provide a computer-readable
medium having computer program code embodied therein,
the computer program code including program code config-
ured to perform the search operations described above.

Additional embodiments provide quantum search appara-
tus that includes at least one quantum computer and a con-
troller operatively associated with the at least one quantum
computer. The controller is configured to cause the at least
one quantum computer to perform a first iterative Grover
Search process including a first series of Grover Searches
according to the characteristic function for varying numbers
of iterations to identify a first search target, to modify the
characteristic function according to the identified first search
target and to cause the at least one quantum computer to
perform a second iterative Grover Search process including a
second series of Grover Searches according to the modified
characteristic function beginning with a number of iterations
determined based on a number of iterations required for at
least one prior iterative Grover Search process to identify a
second search target. Additional embodiments provide quan-
tum search apparatus that include means for performing a first
iterative Grover Search process including a first series of
Grover Searches according to a characteristic function for
varying numbers of iterations to identify a first search target,
means for modifying the characteristic function according to
the identified first search target and means for performing a
second iterative Grover Search process including a second
series of Grover Searches according to the modified charac-
teristic function beginning with a number of iterations deter-
mined based on a number of iterations required for at least one
prior iterative Grover Search process to identify a second
search target.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features of the present invention will be more readily
understood from the following detailed description of spe-
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cific embodiments thereof when read in conjunction with the
accompanying drawings, in which:

FIG.11s aflowchart illustrating quantum search operations
according to some embodiments of the present invention;

FIG. 2 is a block diagram illustrating a quantum search
apparatus according to some embodiments of the present
invention;

FIG. 3 is a graph illustrating a search operation space; and

FIGS. 4-9 are graphs illustrating simulated performance of
various search techniques.

DETAILED DESCRIPTION OF EMBODIMENTS

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that
there is no intent to limit the invention to the particular forms
disclosed, but on the contrary, the invention is to cover all
modifications, equivalents, and alternatives falling within the
spiritand scope of the invention as defined by the claims. Like
reference numbers signify like elements throughout the
description of the figures.

As used herein, the singular forms “a,” “an,” and “the” are
intended to include the plural forms as well, unless expressly
stated otherwise. It should be further understood that the
terms “comprises” and/or “comprising” when used in this
specification is taken to specify the presence of stated fea-
tures, integers, steps, operations, elements, and/or compo-
nents, but does not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components, and/or groups thereof. It will be understood that
when an element is referred to as being “connected” or
“coupled” to another element, it can be directly connected or
coupled to the other element or intervening elements may be
present. Furthermore. “connected” or “coupled” as used
herein may include wirelessly connected or coupled. As used
herein, the term “and/or” includes any and all combinations
of one or more of the associated listed items.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this invention belongs. It will be further understood
that terms, such as those defined in commonly used dictio-
naries, should be interpreted as having, a meaning that is
consistent with their meaning, in the context of the relevant
art and will not be interpreted in an idealized or overly formal
sense unless expressly so defined herein.

The present invention may be embodied as methods, sys-
tems, and/or computer program products. Accordingly, the
present invention may be embodied in hardware and/or in
software (including firmware, resident software, micro-code,
etc.). Furthermore, the present invention may take the form of
a computer program product including a computer-usable or
computer-readable storage medium having computer-usable
or computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. In the context of this document, a computer-usable or
computer-readable medium may be any medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. More specific
examples (a nonexhaustive list) of the computer-readable
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medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, and a compact
disc read-only memory (CD-ROM). Note that the computer-
usable or computer-readable medium could even be paper or
another suitable medium upon which the program is printed,
as the program can be electronically captured, via, for
instance, optical scanning of the paper or other medium, then
compiled, interpreted, or otherwise processed in a suitable
manner, if necessary, and then stored in a computer memory.

Computer program code for carrying out operations dis-
cussed herein may be written in a high-level programming
language, such as Java, C, and/or C++, for development con-
venience. In addition, computer program code for carrying,
out operations according to some embodiments may also be
written in other programming languages, such as, but not
limited to, interpreted languages. Some modules or routines
may be written in assembly language or even micro-code to
enhance performance and/or memory usage. It will be further
appreciated that the functionality of any or all of the program
modules may also be implemented using discrete hardware
components, one or more application specific integrated cir-
cuits (ASICs), or a programmed digital signal processor or
microcontroller.

Embodiments are described hereinafter with reference to
flowchart and/or block diagram illustrations of methods, sys-
tems, client devices, and/or computer program products in
accordance with some embodiments of the invention. It will
be understood that each block of the flowchart and/or block
diagram illustrations, and combinations of blocks in the flow-
chart and/or block diagram illustrations, may be implemented
by computer program instructions and/or hardware opera-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, a special pur-
pose computer, or other programmable data processing appa-
ratus to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions specified in the flowchart and/or block
diagram block or blocks.

These computer program instructions may also be stored in
a computer usable or computer-readable memory that may
direct a computer or other programmable data processing
apparatus to function in a particular manner, such that the
instructions stored in the computer usable or computer-read-
able memory produce an article of manufacture including
instructions that implement the function specified in the flow-
chart and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions that execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions specified in the flowchart and/or block diagram block or
blocks.

Some embodiments of the present invention arise from a
realization that software engineering search (SES) and other
search problems may present challenges that may not be
adequately addressed by conventional quantum search tech-
niques. First, the number of search targets, such as covering
inputs, error states, or synthesis solutions, may not be known
in advance. This target weight indeterminacy (TWI) problem
is significant, because conventional Grover Search (GS) tech-
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niques are generally suited to problems where this number is
known in advance. Second, software tools usually try to find
all search solutions rather than just one. For example, it may
be more useful if a type checker finds as many type violations
as possible rather than stopping after finding the first. For SES
problems, it may be desirable that a quantum search algo-
rithm be efficient at finding all, or at least many, solutions,
rather than only one. Third, real world software artifacts tend
to define large spaces, large spaces of inputs and large state
spaces. A quadratic speedup, while significant, may not be
sufficient to allow searching to completion in large spaces.
Accordingly, to be useful in SES problems, it may be desir-
able that a quantum search algorithm produce as many solu-
tions as possible in the time available. Some embodiments of
the present invention involve use of Iterative Deepening
Grover Search-Find All (IDGS-FA) techniques which may
provide significant gains over other techniques. Such tech-
niques may be used, for example, in software engineering
search problems of widely different characters.

Many quantum search algorithms use or are derived from
GS. In a GS problem, one may specify a search problem by
providing a characteristic function, f: {0, 1}"—{0,1}, such
that f(x)=1 if and only if x is one of the search targets to be
found. A canonical example would be database search: the
input integer represents a database key and the characteristic
function implements the search criterion, with f(x) returning
1 if and only if the database entry with key x matches the
criterion. GS typically takes two arguments, one a particular
representation of f and the other a positive integer t repre-
senting the number of iterations to apply. S puts an n-bit
quantum register (consisting of n quantum bits, or qubits) into
a quantum superposition of all possible n-bit classical inte-
gers, and then applies a unitary quantum transformation,
known as the Grover Iterate, t times. The Grover Iterate is
constructed using f: effectively, each application of the iterate
results in all possible computations of f in quantumparallel,
followed by some manipulation of the resulting quantum
probability amplitudes. Each time the iterate is applied, it
rotates the quantum state of the system a bit farther. Atthe end
of'the titerations, GS observes the register, which selects one
of the 2n possible n-bit integers randomly according to the
probability distribution dictated by the quantum amplitudes.
The art of applying GS may be viewed as lying in choosing
the number of iterations so that the rotations proceed exactly
far enough so that observing the register’s state yields a
search target with high probability. If the total number of

search targets for f is k, then if t=m/4Y 2"/k, the observed
output will be a search target with extremely high probability.
If't is not exactly that value, then the probability of getting a
search target is typically lower, varying in a complex way
witht. GS puts out an n-bit (classical) integer either way: thus,
the caller of GS evaluates f on the output to see if it is a search
target. GS is well suited to the case when the number of search
targets k is known a priori, such as when searching a database
for an entry matching a deterministic criterion such as social
security number. This allows one to provide exactly the right
number of iterations, resulting in a high probability of suc-
cess.

To address the TWI problem, it may be desirable to provide
a quantum search algorithm that does not require providing
the exact number of GS iterations in advance. Iterative deep-
ening may be used to select an approximate number of itera-
tions to feed to GS. Similar to the well known Al search
technique of the same name, iterative deepening involves
successively increasing the number of iterations, testing to
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6

see if a solution is found after each phase. The succession of
depths chosen is termed the deepening schedule.

A difficulty may lie in selecting a deepening schedule
appropriately. If the schedule is too conservative, taking too-
small steps, then it may perform too many steps before reach-
ing the region of the correct value. On the other hand, if it is
too aggressive, taking too-large steps, then it may overshoot
the first occurrence of a good value and waste steps finding a
much more costly higher value (or miss one entirely). IDGS
is described in pseudocode below:

Procedure IDGS (f : CharacteristicFunction)
For (i := 1 to InputSize(f), skipping 2) {
7

Letr:= GS(f, round(4\/2_i) in
If (f{r) = 1) Then Return(r);

Return(-1);

The function InputSize returns the number of bits in the
allowed inputs to f. It increases the number of iterations at
each round by a factor of V2. Note that the iteration skips i=2,
because

round(g \/2_2) = round(% \/2_3)

and there is no point in calling GS twice with the same
arguments. It is assumed that if a search target is found, it is
returned as a nonnegative integer; if none is found, then -1 is
returned. There are several related iterative approaches in
(and some not in) the literature, including the Boyer, Bras-
sard, Hoyer and Tap (BBHT) algorithm and Iterative Shal-
lowing Grover Search (ISGS).

BBHT operates similarly to IDGS, but it adds a random-
ization step as follows. At each iteration, instead of a single
determined choice, it randomly chooses the iteration amount
between 1 and an upper bound L. It is L that increases sys-
tematically; at each round, L. is multiplied by a constant factor
between 1 and 4/3 (BBHT simulations described herein use
[~=1.2, a number recommended in the literature). ISGS, on
the other hand, is similar to IDGS, except that the iteration
amount starts at the largest IDGS value and gets smaller by a
factor of 1/v/2 at each step.

To see whether a less conservative deepening schedule
might be better, Doubled IDGS (DIDGS) has also been simu-
lated herein: it is like IDGS, except instead of increasing i by
1 each time, it is increased by 2 each time. This has the effect
of taking much larger steps (factor of 2 each time) between
rounds, which can increase the risk of failure, but reduce total
cost on success. The case studies described herein compare
these approaches’ costs and failure probabilities. IDGS,
BBHT and DIDGS are referred to herein as “find-one” search
procedures, because each is designed to find one search target
per call.

Because of the probabilistic nature of quantum mechanical
observation, one approach to the FA problem is simply to run
IDGS (or one of the other find one algorithms in the previous
subsection) over and over; each time the quantum state is
observed, all search targets are equally likely to be found.
Thus, over many repetitions, one expects eventually to see all
search targets. However, this approach may find many search
targets multiple times, and it may take many iterations to have
high probability of seeing all of them. In fact, simulation
studies show this technique to be far inferior in cost and
failure probability to the approaches below.
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In some embodiments of the present invention, to solve the
FA problem, each time a search target is found, the charac-
teristic function is altered (i.e. between calls to GS), so that
that search target ceases to be a search target. This process is
referred to herein as “marking the target.” In classical com-
puting, this may be achieved by storing found search targets
in a hash table and checking the hash table during computa-
tion of f, returning 0 if the input is in the hash table. Access to
such a hash table mechanism (or some other mechanism) may
be included in constructing the Grover Iterate. Once this is
implemented, solutions may be found by calling a find one
search procedure over and over. This may be codified as a
generic procedure MarkAndRepeat, psuedocode for which is
presented below:

Procedure MarkAndRepeat (f : CharacteristicFunction,
P : FindOne Search Procedure)
Initialize marking memory to none-marked.
Letr:=-1in
Repeat
r=P();
If (r = -1) { MARK(r); REPORT(z);}
Until (r=-1);

MarkAndRepeat takes both a characteristic function and a
find-one search procedure and applies the straightforward
approach of iterating and marking until no target is found. The
procedure MARK(r) may be left as a parameter, to be cus-
tomized if desired by the caller of MarkAndRepeat. It imple-
ments marking, in some way that is used by the Grover Iterate
to avoid returning a previously found search target, but it may
take further actions. The procedure REPORT(r) may also left
as a parameter, so the caller may customize it to take appro-
priate action on each found search target.

A potential inefficiency of a MarkAndRepeat process is
that each time around the loop, the find-one procedure may
re-execute the entire deepening schedule from the beginning.
However, each time a search target is marked, the total target
weight, while still unknown, decreases. This implies that the
iterative deepening search is highly likely to proceed at least
as far as it did in finding the most recent target. The last value
ofiencountered in the deepening may be remembered and the
next deepening round started there instead of at 1.

According to some embodiments of the present invention,
an IDGS-FindAll (IGDS-FA) procedure, shown as
pseudocode below, incorporates these operations:

Procedure IDGS-FA (f : CharacteristicFunction)
Initialize marking memory to none-marked.
Letr:=-1

Tvals[k] := 1, for all 0 = k < BUFSIZE
IvalsPtr == 0;
Repeat
Let i :=i0 := MinimumEntry(Ivals) in
Repeat

ri= GS(f, round(g\/z_"));

If (f(r) = 1) Then {
Tvals[IvalsPtr] == i;
TvalsPtr := (IvalsPtr+1) mod BUFSIZE;
MARK(r); REPORT(r);
} Else {
ri=-1;
i=1i+1;If(i=2)Theni:=3;
If (i > InputSize(f)) Theni :=1;

Until (r = -1) or (i=1i0)
Until (r=-1);
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The procedure IDGS-FA’s internals are “in-lined”, rather
than called as a black-box. However, there may be a problem
with simply remembering i and starting from there next
round. Because of its quantum mechanical nature, GS is
probabilistic, so there is a small but significant probability
that it will fail to find the search target at the highest-likeli-
hood round and instead proceed 1 or a few rounds beyond
before finding one. If IDGS-FA proceeded blindly from that
later round, it could waste GS iterations using a needlessly
large i value. To combat this, IDGS-FA keeps a buffer of the
BUFSIZE most recent i values resulting in search targets. To
proceed to the next target after finding one, i.e. to proceed to
the next iteration of the outer Repeat loop, it may use an initial
i value equal to the minimum of all i values in the buffer
(Ivals). This way, even if an unlikely event occurs and it
proceeds too far in one outer round, it will still start the next
outer round conservatively with the least i value remaining in
the Ivals buffer. A simulation study indicates that BUF-
SIZE=5 leads to the least-cost runs over many problems.

IDGS-FA uses cyclic deepening. Since IDGS-FA may start
each outer loop iteration at some 1 value greater than 1, there
is a small statistical possibility that the search frontier (cur-
rent i value) gets above the high-probability i range. In such
cases, when IDGS-FA fails to find a search target at the
highest i value, it wraps around back to 1. The process then
proceeds untilireaches the initial i value (iy). Thus, each outer
loop iteration searches the same 1 range as IDGS, but cycli-
cally.

It may be desirable that a quantum search solution for SES
problems also deal with large spaces. For example, generat-
ing test cases for a function that accepts six 32-bit integer
parameters represents a characteristic function operating on

192-bitinputs. Even ¥ 2'°2=2%C is likely an infeasible amount
of effort for the foreseeable future. In some SES problems,
large spaces may be attacked with abstraction, creating a
small-space model of some more complex artifact. For
example, a small finite state machine (FSM) model ofa larger
reactive system specification may be created, and a model
checker run on the FSM model to search for design errors.
Abstraction can be used to reduce the space size prior to
applying quantum search techniques as well classical tech-
niques.

Also, there may be some SES problems where abstraction
is inapplicable or too hard to do. For example, software test
generators are supposed to find input sets that cover paths in
the actual code, not in a small model of the code. In software
synthesis, there is a minimal functional complexity that is to
be synthesized, and if this is too large, there may be no way to
divide it up.

According to some embodiments, large spaces may be
addressed using search cutoft. That is, the measure of com-
putational cost may be taken as the number of GS iterations.
A bound on total iterations may be set to be used by the
search, and then the search may be stopped when this bound
is reached. More precisely, prior to each call to GS(ft), t may
be added to a running total of iterations used: if the new sum
is larger than the bound, the search procedure may be termi-
nated. This simple cutoff mechanism can be applied to all of
the search procedures discussed previously, including IDGS-
FA.

The question may then be which search procedure can find
the most solutions in a given time bound. A case study pro-
vided herein evaluates this. However, it may be observed that
the iterative shallowing procedure ISGS starts with the hard-

est search (V27PSize0y first. For some spaces, this initial
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search itself may be intractable, so iterative shallowing may
not find any solutions. Thus, ISGS may be inferior for large
space problems.

FIG.11s aflowchart illustrating quantum search operations
according to some embodiments of the present invention. A
characteristic function corresponding to a search criterion is
identified (block 110). In example embodiments, the charac-
teristic function may be realized in a Grover Iterate construct.
A Grover Iterate is a quantum computing concept defined in
the literature: it is a particular unitary transformation on quan-
tum states that combines evaluating the function f (whose
characteristic function is given) with rotating the quantum
state vector in the Hilbert space appropriate to the problem. A
series of Grover Search processes are performed using a
series of Grover Iterates to identify multiple search targets.
For each Grover Iterate, an iterative series of Grover searches
may be performed with varying numbers of iterations using a
cyclic deepening strategy.

Still referring to FIG. 1, a deepening schedule is initialized,
e.g., an initial entry in the schedule is selected (block 115).
Based on the current entry in the deepening schedule, a num-
ber of iterations is determined (block 120). If this number of
iterations does not cause a maximum total number of itera-
tions to be exceeded, a Grover Search is performed using the
current Grover Iterate (blocks 125, 130). After the Grover
search for the given number of iterations is completed, the
state of the quantum computer is determined and evaluated to
determine if the state is a search target (block 135). If the
search target is not found and the end of the deepening sched-
ule has not been reached, the process goes to the next entry in
the deepening schedule and a new number of iterations is
determined (blocks 140, 141, 120). Alternatively, if the end of
the deepening schedule has been reached, the process returns
to the starting entry of the deepening schedule and the new
number of iterations determined from that entry (blocks 140,
143, 120). As before, if the new number iterations does not
cause the maximum number oftotal iterations to be exceeded,
the process proceeds with another Grover Search using the
new number of iterations (blocks 125, 130). The result of this
search is evaluated as before, i.e., if a target is not found, the
process moves to another entry in the deepening schedule.

Once a target is found (block 135), the characteristic func-
tion (Grover Iterate) is then modified based on the identified
target (block 140). A new deepening schedule entry is
selected based on the schedule entries when targets have been
previously found, and the process returns to determining a
number of iterations associated with this entry and perfor-
mance of a Grover Search using the new Grover Iterate and
the determined number of iterations (blocks 145, 120, 125,
130). The result of this Grover Search is evaluated as
described above and, if no target is found, a new entry in the
deepening schedule is selected and another Grover Search is
performed using the associated number of iterations (blocks
135, 140, 141 or 143, 120, 125, 130). If it is determined that
a maximum total number of iterations will be exceeded dur-
ing any given pass through the loop, the search process is
terminated (blocks 125, 150).

FIG. 2 illustrates a search apparatus according to further
embodiments. The apparatus includes at least one quantum
computer 220. A find-all search controller 210 is operatively
associated with the at least one quantum computer 220 and is
configured to implement find all search procedures along the
lines discussed above in conjunction with the at least one
quantum computer 220. In particular, the controller 210 may
be configured to provide control inputs to cause the at least
one quantum computer 220 to perform iterative series of
Grover Searches by establishing and modify a characteristic
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function as described above, and is further configured to
determine and evaluate output states of the quantum com-
puter for purposes of identifying search targets. It will be
appreciated that the quantum computer 220 generally may
take any of a number of forms, as a wide variety of physical
systems have been proposed for quantum computation. It will
be further appreciated that the control inputs provided by the
controller 220 may be appropriate for the physical system
involved and may include, for example, hardware and/or
combinations of hardware and software configured to provide
the appropriate control inputs and to detect the output states of
the quantum computer 220. For example, some proposed
quantum computers may comprise atomic level systems that
are configured to be controlled and/or monitored using lasers,
electromagnetic fields and the like.

According to some embodiments. IDGS-FA operations
along the lines discussed above may be used in the software
engineering search context. Herein, a space of problems for
which quantum search may be expected both to succeed and
to be faster than classical approaches is discussed, including
discussion of application of IDGS-FA to three SES applica-
tions. Each of these three applications has been implemented
in simulation and run on examples.

Before proceeding to applications, it is worth considering
when quantum search (based on Grover Search, as above) is
likely to be cost effective. To help with this, a target weight w
for a search problem may be defined as the ratio of the (abso-
Iute) number of search targets k to the total size of the search
space (277“5ze") The find-one performance of IDGS is
compared against that of classical search in FIG. 3.

For concreteness, a search procedure “Classical” is defined
to operate as follows. At each iteration, Classical selects an
n-bit input randomly from among those not yet selected and
evaluates the characteristic function f on it. It proceeds in this
way until a search target is found.

One can show that the Classical search procedure’s
expected cost is O(2"/t1)=0(1/w), classical iterations. This is
the curve marked “classical” in FIG. 3. Because IDGS’s
deepening schedule results in a total number of iterations
being the sum of a truncated geometric series with ratio V2,
we expect IDGS’s cost to be ©(2/t=O(V1/w). This is the
curve marked “IDGS” in FIG. 3. Note that each search prob-
lem appears as a point on these curves. A number, cutoff, of
Grover Iterations is fixed as an upper limit for acceptable cost.
The w coordinate is the target weight for the problem, and the
I coordinate is the number of iterations used by the corre-
sponding search procedure to find a target. The space may be
partitioned into three zones (I, I1, and I1I). Point A is shown in
Zone 1. For points in Zone I, both IDGS and Classical will
take more than the designated cutoff number of iterations, so
no solutions will be found. Thus, GS-based search procedures
may be of no help for problems in Zone I; the w at which
IDGS requires at most cutoff iterations may be referred to a
W .- 1his is the boundary of Zone I.

Even though an IDGS iteration may be viewed as doing the
same information processing function (i.e., executing the
characteristic function) as a Classical iteration, this does not
necessarily mean the two have the same time cost. This rela-
tion will depend upon the technologies chosen. For example,
one can parallelize the Classical computation to run 10 ran-
dom guesses concurrently on 10 workstations, effectively
decreasing the time cost per iteration by a factor of 10. In FIG.
3, the time cost ratio between one IDGS iteration and one
classical iteration is denoted as R. Once the ratio between
number of classical iterations and number of IDGS iterations
falls below R, Classical is faster, so quantum search may be
irrelevant. Since the iterations ratio depends inversely on vw,
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W, May be defined as the w at which the ratio is R. All
problems lying to the right of w,, . may be defined to be in
Zone 111, in which Classical beats quantum search. Thus, in
FIG. 3,1/1,=R and w =w ,=w,,, ... Either Classical or IDGS
may be chosen at w,,, ...

With these definitions, quantum search may only be useful
for find-one problems as long as w,,,,,<w=w,, . such as for
point B. This area is termed Zone II. This discussion is
intended to be accurate, but parameterized by cutoff and 5.
Also, if Classical or IDGS is improved, this may also change
the quantitative picture, without altering the qualitative one
shown in FIG. 3. An improvement to Classical (fewer itera-
tions), will move w,,,, to the left, since the curve will be
lower. An improvement in Classical technology (e.g. by using
20 parallel nodes instead of 10) will increase R, also moving
W, 10 the left. Improvements in quantum circuitry may
move w,, . to the right, approaching 1 as R—1. For illustra-
tion, if the cutoff is be 2,000,000 (2¢6) iterations, and the
technology ratio R=10, then simulation studies show
W,~2" " and w,, , ~0.0029675.

This picture is useful for understanding find-all procedures
aswell. As long as the initial target weight of the problem falls
within Zone 11, the find-all procedure may return at least one
solution and proceed in finding solutions up until the total cost
reaches the cutoff bound. Each time a solution is found and
marked, the target weight of the remaining problem
decreases, so the point will move leftward in the diagram.
Also, since some of the iteration bound has been used up,
W, May move rightward, with the problem point crossing
into Zone I when the entire search reaches cutoff.

The following describes techniques for checking correct-
ness properties of finite state machines using quantum search.
This is not intended to be fully general; rather, it is illustrative
of one way to check some types of properties. A (determin-
istic) finite state machine M is a 4-tuple:

M=[n,L,S,€2", 0:2"xI—2"]

where states are represented by n-bit integers, [ is a finite input
alphabet, S, is a distinguished start state, and o is the state
transition function mapping a state and an input symbol to the
next state, (ignore output alphabets and transition labels for
this illustration).

A safety property may be defined to be a predicate P:
2"—{0,1}. P(x)=1 iff x satisfies the property. A state failing P
may be defined as a bad state; likewise, a state satisfying P
may be a good state. It is generally desirable to know if any
bad states are reachable from S,. However, the reachability of
a state is a global graph property of the entire state space.
Quantum search based on GS cannot speed up an exhaustive
enumeration of the space, at least in the worst case, because
the worst case space requires exponentially many iterations of
the next-state function to reach the deepest states. On the
other hand, it may not be possible to simply search for all bad
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states: it is typical to design an FSM embedded in a large state
space, with the intention that only a tiny fraction of all states
are reachable. For example, an FSM that cyclically counts
from 0 to 9 and back endlessly, likely uses states represented
as 4-bit integers. Thus, 6 of the 10 states are not intended to be
part of the FSM. A plausible correctness property could be
that the state number is less than 10. If bad states were simply
detected, it would uselessly return all states numbered higher
than 9. If there is a reachable bad state, and if S, is good, then
there must exist at least one edge state: a good state for which
at least one transition exists to a had state. So instead of
searching for a reachable bad state, every state may be
checked to see if it is an edge state. Pseudocode for such an
edge detecting characteristic function, constructed from an
FSM M and property P and suitable for use with IDGS-FA, is
shown below:

Function Edgestate[M, P] (x : 2"M)
If (P(x) and ForSome i € I 5,7 P(0p (%,1)) ) {
Return(1);
}Else {
Return(0);

This (classical) algorithm may be translated into a suitable
Grover Iterate. For example, this could detect states in which
a supposed data invariant becomes violated, such as when a
counter goes beyond a supposed upper bound, or when “the
train enters the crossing with the arm not down.” Identifying
these states to the designer of the FSM model should allow
finding and fixing errors.

A goal of a software test generator may be to discover a set
of inputs that, when input to the code under test (CUT),
together cover as many paths (branches, decisions, etc) as
possible. The following describes how to apply IDGS-FA to
path-coverage test generation, but the techniques can be
adapted straight-forwardly for use with other coverage met-
rics. A tool that accepts the CUT may be built, for example, a
source code procedure P, and produces a transformed source
code procedure P'. For simplicity of exposition, it is assumed
that P (and P') always takes a single n-bit integer argument
and always terminates (discussion of encoding techniques
enabling handling of complex data formats is provided
below). P', instead of putting out the result put out by P for
input X, puts out a representation of the code path taken during
execution of P(x). We assume that each path in the code is
represented by a unique bit-string identifying it; since there
are only 2” inputs, there are only 2” path identifiers. In the
simulation environment describe herein, such a tool has been
implemented operating on Common Lisp DEFUN (function
definition) forms. An example input and output of this tool are
shown below:

(compute-coverage-fn
'(Defun IS-NOT-PRIME? (x)
(if (for (=x0) (=x 1))
1

(if (=% 31787)
7

(let* ((upper (floor (sqrt x)))
i2)
(while (and (<= i upper)

(inef 1))
(if (> i upper)
nil

Dm)

(not (zerop (mod x 1))))
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-continued

14

==>
(LAMBDA (X)
(LET* ((_PATH 1))
(BLOCK _OUTER-BLOCK
(IF (LET* ((#:G2011 (=X 0)))
(IF #:G2011

(PROGN (EXTEND-PATH-0) #:G2011)
(PROGN (EXTEND-PATH-1) (= X 1))))

(PROGN (EXTEND-PATH-0) 1)
(PROGN (EXTEND-PATH-1)
(IF (= X 31787)

(PROGN (EXTEND-PATH-0) 7)

(PROGN (EXTEND-PATH-1)

(LET* (UPPER I)

(SETQ UPPER (FLOOR (SQRT X)))

(SETQI2)

(IF (IF (<=1UPPER)
(PROGN (EXTEND-PATH-0)

(NOT (ZEROP (MOD X I))))

(PROGN (EXTEND-PATH-1)

NIL))

(PROGN (EXTEND-PATH-0)
(PROGN (INCF I)

(WHILE (AND (<=1 UPPER)
(NOT (ZEROP (MOD X I))))
(INCF D))

(PROGN (EXTEND-PATH-1) NIL))
(IF (> 1 UPPER)

(PROGN (EXTEND-PATH-0) NIL)

(PROGN (EXTEND-PATH-1) 1))))))))

_PATH))

The coverage function (lower) collects the path identifier
by extending it 1 bit at a time as each branch is taken, finally
returning it as the value of the variable_ PATH. A potential
difficulty in applying IDGS-FA is that each time an input is
found that covers a new path in the code, it is desirable to mark
all other inputs leading down the same path as well. Other-
wise, IDGS-FA could conceivably keep on returning new
inputs that execute paths already covered. For example, all
even inputs greater than 2 will execute the same path, [D=125,
in the code shown above. To solve this, the characteristic
function and MARK procedures may be constructed as
shown in the following pseudocode:

Function CodeCoverage[P'] (x : 2'7)
Let path := P'(x) in
If (InMarkingHashTable?(path)) {
Return(0);
} Else {
Return(1):

Procedure MARK[P'] (x : 27
Let path := P'(x) in
PutInMarkingHashTable(path);

A trick is for the characteristic function to return 1 if and
only if the path executed by P on the input X is not in the
marking table. Of course, the MARK procedure must enter
the path identifier for x into the marking hash table (instead of
x itself). Again, the characteristic function is translated into
quantum form as the Grover Iterate.

An example of a synthesis problem is to construct code
from a specification. While in general a very difficult prob-
lem, the following discussion focuses on library-based syn-
thesis. In this approach, one may assume a library of compo-
nents pre-existing and the search is for one or a simple
assembly of such components that performs the specified
function. This can be more tractable than first-principles syn-
thesis, because the library components can encapsulate arbi-
trarily complex functionality.
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To illustrate the application of quantum search, an example
is speeding up generalized behavior-based retrieval (GBR).
An idea of GBR is that the user specifies the synthesis prob-
lem by giving one or more sets of desired concrete input/
output tuples; the task then is to find all component assem-
blies within a given depth bound that for each set of the given
inputs compute the corresponding outputs. All such admis-
sible assemblies are reported to the user as candidate pro-
grams.

For this illustration, it is assumed that all library compo-
nents are 0-, 1- or 2-input functions without side effects. A
subset of a floating point math library is a good example of
such a case, where 0-ary functions are constants. There may
be no clear way to map the doubly exponential (in assembly
depth) collection of assemblies onto a single exponential-
sized input space, where an input is represented by an integer.
Instead, one may proceed as follows.

Using classical computation techniques, all possible
assemblies may be precomputed out to a given depth d, cre-
ating an assembly library, which is a superset of the original
library. The assembly library may be indexed so that each
assembly gets a unique identifying integer between 0 and
N-1. The original library may be indexed by integers so that
each component has an identifier between 0 and K-1.

The characteristic function f may behave as follows. Let n
be the smallest n such that 2”=KN?. Then f accepts n-bit
integers x€2”. It decodes x as a triple (a, b, ¢) where
¢&{0...K-1} identifies a component, and a,b&{0 .. . N-1}
eachidentify an assembly. f then proceeds to evaluate the d+1
depth assembly c(a, b) on each of the input sets in the user’s
query, computing the output for each. Finally, fcompares the
resulting outputs to the corresponding ones in the user’s
query and returns 1 if and only if each output matches accord-
ing to a match criterion specified by the user. Note that if the
input fails to decode as a triple with all entries in the given
ranges, f puts out 0. IDGS-FA will then return all d+1 deep
assemblies matching the query and having a two-input com-
ponent as highest level operator. One can also do this search
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for 1-input components by decoding the input integer as a
component identifier and a single assembly identifier; how-
ever, this is a much smaller search problem that is likely
tractable classically.

Using the simulation framework, a simulated quantum
GBR was implemented based on IDGS-FA. In one example,
a library built from four input variables (x1, x2, y1, y2), four
binary arithmetic operators (+, —, * ,/), and four unary opera-
tors (negate, reciprocal, square, and squareroot) was loaded.
The tool built out an assembly library to 2 levels of unary
applications plus 1 level of binaries, resulting in a library of
1608 distinct assemblies. A GBR query was issued with three
concrete input/output pairs (listed as (x1; y1; x2; y2 out-
put): (3, 4, 1, 2.1 P 1.4866068 . . . ), (12.5, -4.5,
-5.6,»7.0859014 . . . ), and (8, 15, -13, =025
14.5451882 . . . ). The search found the result, (SQRT(+
(SQUARE(+X1(NEGATE Y1)))(SQUARE(+X2(NEGATE
Y2))))). The simulator reported that this result emerged after
3531 GS iterations, with the quantum parallelism examining
10,349,088 possible assemblies. The expectation value for a
corresponding Classical search is 4,194,304 evaluations.

Since the integer encoding is based on library indices, the
library components can operate on arbitrary data structures,
including lists, arrays, and objects. The quantum parallelism
is split up among distinct indices, with the Grover Iterate
looking up the structure in the library and performing com-
putations on it. This avoids the problem of having to directly
encode pointers and memory addresses, which would drasti-
cally raise the bit-complexity of the encoding and reduce the
reach of quantum search.

A simulation-based evaluation study carried out to com-
pare IDGS, IDGS-FA, and the other candidate procedures
will now be described. It is notoriously difficult in general to
simulate quantum computing classically. To simulate an arbi-
trary nxn unitary quantum transformation acting on an n-qu-
bit register, a matrix of size 2% is needed, and the state vector
representing the quantum state of the register requires repre-
senting 2" complex numbers. This may make it difficult to
represent and simulate more than a few tens of qubits. Simu-
lating the operation of GS, however, may allow an exponen-
tial shortcut. The Grover Iterate operates by (1) negating the
numerical sign of each amplitude value representing a search
target, and then (2) performing a rotation about the mean,
which operates on all amplitudes. But note that there are
really only two distinct amplitude values, those of search
targets and all others. The algorithm can, therefore, operate
only on two numbers. The pseudocode is shown below:

Procedure SimulateGS (f, t)
Let SpaceSize := 2/pusSizel)
Target := Other :=null
NumTargets := NumOthers := 0 in
Fori:=0 up to SpaceSize - 1
Ffi)=1)
{ NumTargets := NumTargets +1; Target :=i; }
Else
{ NumOthers := NumOthers +1: Other :=i; }
Let TargetAmp := OtherAmp := 1/‘/SpaceSize
a := NumTargets / SpaceSize;
B := NumOthers / SpaceSize; in
Do t times {
TargetAmp := - TargetAmp:
Let x := (o TargetAmp + p OtherAmp) in
TargetAmp := TargetAmp — 2x;
OtherAmp := OtherAmp - 2x;

If (GetRandomO1( ) = aTargetAmp?)
Return(Target);

Else
Return(Other);
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The simulation accepts the characteristic function f and the
number of iterations t. It starts by exhaustively trying all
possible inputs to f and counting the number of search targets
and others (non-search-targets). It also remembers one search
target and one other. It then proceeds to compute the two
quantum amplitude values by applying the Grover Iterate t
times (body of the Do-loop). Finally, it calls the GetRan-
domO1 procedure to pick a random number uniformly from
[0; 1]; if that number is less than the square of the target
amplitude, then the remembered search target is returned,
otherwise the remembered Other is returned.

The step of exhaustively examining all inputs to f costs 2”
steps on a classical computer, so using SimulateGS is strongly
scale-bounded. However, much larger runs may be simulated
if details of f are not important. Therefore, the function Simu-
lateGS-Abstract shown in pseudocode below, accepts,
instead of a characteristic function, merely the number of
search targets:

Procedure SimulateGS-Abstract (Nbits, Ntargs, t)
Let SpaceSize := 2V0irs
NumOthers := SpaceSize — Ntargs
TargetAmp := OtherAmp := 1/‘/SpaceSize
a := NumTargets / SpaceSize;
B := NumOthers / SpaceSize; in
Do t times {
TargetAmp := - TargetAmp;
Let x := (o TargetAmp + p OtherAmp) in
TargetAmp := TargetAmp -2x;
OtherAmp := OtherAmp -2x;

Retumn(a TargetAmp?);

SimulateGS-Abstract skips the initial step of SimulateGS
and goes directly to the Do loop. Finally, instead of returning
an actual search target (or Other), it returns merely the prob-
ability that GS would return a search target, which is Tar-
getAmp?. The run-time cost of SimulateGS-Abstract is only
proportional to t, the number of iterations, which may be

never worse than ¥ 2”. SimulateGS-Abstract is used to gener-
ate the study results below. This involves slight alterations to
the pseudocode of IDGS, IDGS-FA, etc, in order to extract
performance results, but these alterations are straight for-
ward.

The three main candidate find-one procedures, IDGS,
BBHT, and DIDGS, are compared. For find-one procedures,
of interest are two metrics: the expected iterations cost of
finding a search target and the probability of failing to find
one. ISGS is omitted from these graphics, because (a) its cost
is generally much higher than the other three, due to it starting
with the maximum iterations, and (b) its failure probability is
identical to that of IDGS, which is shown.

FIG. 4 shows the iterations costs of the three, graphed
against the number of search targets. This graph contains the
first 1000 data points for each curve in a 24-bit space (i.e. of
total size 2°%). The leftmost 9 data points, extending a factor
of three times higher, are omitted for readability. The expec-
tation values may be computed exactly by instrumenting the
procedures to accumulate probabilities returned by Simu-
lateGS-Abstract and applying the usual expectation value
formula”

i—1
E= Zipﬂ(l -p)
7 =1
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where p; is the search target probability returned at the ith
round by SimulateGS-Abstract.

BBHT is the most costly, routinely exceeding the cost of
IDGS by 20%. DIDGS, on the other hand, is always below the
cost of IDGS by a small but variable amount. This variability
is symptomatic of the relatively aggressive step size of
DIDGS’s deepening schedule. FIG. 5 graphs the (log of)
likelihood of failure for each of the three. DIDGS is routinely
from 1000 to 10000 times more likely to fail than IDGS.
BBHT, on the other hand, is generally less likely to fail than
IDGS, but has a few points near the left extreme that go well
above IDGS. For example, with exactly one search target, the
failure probability is greater than 0.01.

Even though DIDGS’s failure probability is usually less
than 0.001, this increase over IDGS translates to a marked
reliability decrease of DIDGS-mr relative to IDGS-mr and
IDGS-FA. In addition, and somewhat surprisingly, this
results in DIDGS-mr’s cost increasing to well above that of
IDGS-FA. For these reasons. DIDGS’s lowered reliability
outweighs its slight erratic improvement in iterations cost.

The total costs to find all solutions using the other three find
all procedures were also compared. The following compares
the procedures even under different MARKing schemes. That
is, it is not necessarily the case that finding one solution
decreases the total target weight by one search target. For
example, under the MARKing scheme used for test genera-
tion discussed above, each time an input is found that covers
a new path, the path is marked, not the input. Thus, all inputs
that cover that path are removed. This has the effect of
decreasing, the target weight by the number of inputs cover-
ing that path. To study this sort of effect, the find all proce-
dures may be instrumented to accept a sequence of target
weights, known as an i-Sequence. For an i-Sequence 1, at
round i of the find all procedure, SimulateGS-Abstract is
given as number of search targets the sum of all entries I, with
j=i. Thus, the usual MARKing scheme is equivalent to simu-
lating an i-Sequence with all 1 entries. The test generation
MARKIing scheme leads to i-Sequences with entries typically
greater than 1.

In the first comparison, shown in FIG. 6, i-Sequences hav-
ing all is were used. I ran each of the three procedures on each
of eight different i-Sequences with lengths increasing expo-
nentially from 8 to 1024. The graph shows the total cost to find
all search targets for each procedure. IDGS-FA is best, with
the cost of IDGS-mr (nearest competitor) 34% higher at the
low end, increasing up to 67% at the 1024 long i-Sequence.
The same comparison was done using i-Sequences with ran-
dom entries to model the test generation MARKing proce-
dure. The results are shown in FIG. 7. Here. IDGS-FA is once
again best, with IDGS-mr increasing from 15% more costly
up to 46% at the high end. In both comparisons, BBHT-mr
was even more costly compared to IDGS-FA. Thus, BBHT-
mr appears to be inferior.

An additional comparison is to quantify which procedure
handles the large space problem the best. That is, it is desir-
able to simulate with a cutoff bound in place and see which
procedure finds the most solutions in the available resource.
Having eliminated the others as inferior based on previous
comparisons, only IDGS-FA and IDGS-mr are compared.

The experiment is defined as follows. Operating within a
32-bit space, an iterations cutoff of 2.000,000 (2e6) iterations
is set. That is, each procedure may use a total of 2e6 iterations
to find as many solutions as possible. Only i-Sequences hav-
ing all is are considered, although the study could be done for
other i-Sequences, but as the previous comparison showed,
the results tend to be similar.
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Each procedure is run on a selection of i-Sequences in an
attempt to cover a representative portion of Zone II. However,
this is not well presented in a single graph, so the problem
may be broken up. First, FIG. 7 looks ati-Sequence lengths up
t0 =32000. This explores the smaller scale region at the left of
Zone 11, but contains the hardest problems because the target
weights are lowest leading to more iterations per solution.
FIG. 7 graphs the ratio of the number of solutions found by
IDGS-FA to that of IDGS-mr. As shown, this ratio starts out
around 1.26, but quickly grows above 1.6, with a maximum
near 1.8. Thus, for this subset of Zone IDGS-FA finds
between 26% and 80% more solutions than IDGS-mr.

FIG. 8 steps back and looks at performance across the
entire width of Zone I, using R=10to definew,,, for Zone II.
Here, the problem sizes are much larger and, hence, much
easier. This graph looks at performance for three different
settings of the IDGS-FA buffer size (3, 4, and 5). Clearly,
BUFSIZE 5 performs the best. For this setting, IDGS-FA
always finds significantly more solutions than IDGS-mr.
However, as the problem size moves to the rightin Zone I1, the
advantage drops. This is to be expected because, moving
right, the number of iterations per solution found drops to
around 16. There doesn’t appear to be much to be saved
between following the full IDGS deepening schedule to reach
16 and saving the first few rounds of deepening. For hard
problems, as atthe left end, more iterations are needed and the
advantage increases. This also shows that if the buffer size is
too small. IDGS-FA can actually find fewer solutions than
IDGS-mr; this is because it is relatively easy for random
chance to cause IDGS-FA to jump ahead of where it should be
in the iteration schedule for optimality. If i gets too big in
IDGS, it does not mean failure, just that IDGS will find the
solution using extra iterations.

The simulation studies here have focused primarily on a
32-bit problem space size, but have greater generality than
that. The iteration cost of GS-based search procedures may
depend upon the target weight w rather than the absolute
number of search targets directly. Thus, some results may be
scaled into other spaces. For example, 1000000 search targets
in a 32-bit space corresponds to

1000000

2424
27 CED

search targets in a 24-bit space. Moreover, since the ratios
between iteration costs among procedures depends only on
number of iterations, and those numbers depend on target
weight, the cost ratios may be scaled to other spaces. For
example, the simulation shows that IDGS’s expected cost for
a 1-target search in a 24-bit space is the same (4998 iterations)
as that of'a 256-target search in a 32-bit space. BBHT scales
this way as well, though one must be careful to use the same
random state with BBHT, since it has extra randomization in
it. DIDGS scales the same way, for spaces with an even
number of bits. The scaling is approximate for odd numbers
of bits. ISGS, however, does not scale this way, because it
starts its search from the worst case search, which is more
costly in a larger space. For IDGS, the failure probability does
not remain the same as space size increases for fixed target
weight. Generally, it drops as space size increases; this is
because there are more and more iteration levels, all of which
must fail. The failure probability is the product of the failure
probabilities of all levels. Thus, it may be concluded that
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IDGS-FA with buffer size 5 is the best among the candidates
reviewed here and best addresses the three challenges: TWI,
FA, and LS.

Quantum computing can be successtully applied to SES
problems to achieve a quadratic speedup over classical
approaches. This quadratic speedup over brute force is
achieved on every instance, so this is not a heuristic improve-
ment. While SES problems bring new challenges to applying
quantum search, namely the TWI, FA, and LS problems,
embodiments of the present invention described herein use
IDGS-FA, which is based on Grover’s Search Algorithm, to
speed up other known candidate solutions to these problems.
As shown herein, IDGS-FA may be applied to at least three
disparate SES problems, FSM property checking, test gen-
eration, and library-based synthesis.

Also described herein are techniques for simulating GS-
based search, both concrete and abstract. The abstract version
allows simulating in time proportional to the actual achiev-
able run-time cost of GS itself, though answers may not
actually be computed with it, only statistics about the opera-
tion of the search algorithms themselves. Finally, simulation
shows that IDGS may outperform other find-one procedures
and that IDGS-FA may outperform other find-all procedures,
especially when resource bounds force cutoff.

The basic GS method is known to be optimal to within a
constant factor for quantum search. This does not consider the
find-all problem; however, it is also known that the find all
problem is solvable in O(WNE) iterations, where n is the size
of the space and there are k search targets. One can show
IDGS-FA achieves this as well. One may wonder about clas-
sical heuristic algorithms for the various problems discussed
here. For example, one can use IDGS to solve the SAT prob-

lem in O(Y 2)) time. But it is known, for example, that the best
3-SAT algorithm is faster: O(1:329...7) vs. O(1:414 . ..”) for
IDGS. However, it is also known that one can use the quantum
technique of amplitude amplification to adapt the 3-SAT

algorithm to a quantum version that uses O(V1.329..."). Fur-
thermore, it is known to adapt some classical heuristics using
quantum techniques to achieve quadratic speedups. Genetic
algorithms, which can be used for many purposes including,
test generation, have a quantum version as well. Therefore,
IDGS and IDGS-FA may not solve all problems optimally.

There are many tools for checking properties of FSMs and
specifications in other formalisms. IDGS and IDGS-FA could
provide a quadratic speedup over classical SAT solvers for
problems lying in Zone II. Similarly, there are many classical
test generation techniques, many based on heuristics for solv-
ing NP hard problems. Such could be supported by IDGS and
IDGS-FA to achieve speedups as well.

Many variations and modifications can be made to the
embodiments without substantially departing from the prin-
ciples of the present invention. All such variations and modi-
fications are intended to be included herein within the scope
of the present invention, as set forth in the following claims.

That which is claimed:

1. A method of performing a quantum search, comprising:

performing a first iterative grover search process by caus-
ing a quantum computer to perform a first series of
grover searches according to a characteristic function
comprising a first grover iterate for varying numbers of
iterations to identify a first search target;

for each respective one of the first series of grover searches
performing operations as follows:
determining a first series number of iterations;
performing the respective one of the first series of grover

searches using the first grover iterate when the first
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series number of iterations does not exceed a first
maximum total number of iterations; and
terminating the respective one of the first series of grover
searches when the first series number of iterations
exceeds the first maximum total number of iterations;
modifying the characteristic function according to the first
search target so as to remove the first search target as a
target subject from subsequent grover searches; and
performing a second iterative grover search process by
causing the quantum computer to perform a second
series of grover searches according to the characteristic
function that was modified and comprising a second
grover iterate for varying numbers of iterations to iden-
tify a second search target;

for each respective one of the second series of rover
searches performing operations as follows:
determining a second series number of iterations based

on iterations performed for the first series of grover
searches;
performing the respective one of the second series of
grover searches using the second grover iterate when
the second series number of iterations does not exceed
a second maximum total number of iterations; and
terminating the respective one of the second series of
grover searches when the second series number of itera-
tions exceeds the second maximum total number of
iterations;

wherein each of the first and second iterative grover search
processes use one of incrementally increasing and
decreasing numbers of iterations for each succeeding
one of the first and second series of grover searches,
respectively; and

wherein performing the second iterative grover search pro-
cess comprises causing the quantum computer to per-
form the second series of grover searches with the sec-
ond series number of iterations determined based on a
minimum number of iterations among iterations per-
formed to identify respective search targets for a plural-
ity of preceding grover search processes.

2. The method of claim 1, wherein performing the first
iterative grover search process comprises identifying a first
number of iterations performed to identify the first search
target; and

wherein performing the second iterative grover search pro-
cess comprises causing the quantum computer to per-
form the second series of grover searches without per-
forming the first number of iterations.

3. The method of claim 1, wherein performing the second
iterative grover search process further comprises causing the
quantum computer to perform a third iterative grover search
process using a reinitialized number of iterations responsive
to failure to find the second search target after reaching a
predetermined bound on the number of iterations.

4. The method of claim 1, wherein respective numbers of
iterations of each of the first and second iterative grover
search processes vary according to a predetermined function
for each succeeding one of the first and second series of
grover searches, respectively.

5. A computer program product, comprising:

a non-transitory computer readable medium comprising
computer readable program code embodied in the com-
puter readable medium that when executed by a quan-
tum computer processor causes the quantum computer
processor to perform operations comprising:

performing a first iterative grover search process by caus-
ing a quantum computer to perform a first series of
grover searches according to a characteristic function
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comprising a first grover iterate for varying numbers of
iterations to identify a first search target;

for each respective one of the first series of grover searches

performing operations as follows:
determining a first series number of iterations;
performing the respective one of the first series of grover
searches using the first grover iterate when the first
series number of iterations does not exceed a first
maximum total number of iterations; and
terminating the respective one of the first series of grover
searches when the first series number of iterations
exceeds the first maximum total number of iterations;
modifying the characteristic function according to the first
search target so as to remove the first search target as a
target subject from subsequent grover searches; and
performing a second iterative grover search process by
causing the quantum computer to perform a second
series of grover searches according to the characteristic
function that was modified and comprising a second
grover iterate for varying numbers of iterations to iden-
tify a second search target;

for each respective one of the second series of grover

searches performing operations as follows:

determining a second series number of iterations based
on iterations performed for the first series of grover
searches;

performing the respective one of the second series of
grover searches using the second grover iterate when
the second series number of iterations does not exceed
a second maximum total number of iterations; and

terminating the respective one of the second series of
grover searches when the second series number of
iterations exceeds the second maximum total number
of iterations;

wherein each of the first and second iterative grover search

processes use one of incrementally increasing and
decreasing numbers of iterations for each succeeding
one of the first and second series of grover searches,
respectively; and

wherein performing the second iterative &rover search

process comprises causing the quantum computer to
perform the second series of grover searches with the
second series number of iterations determined based on
a minimum number of iterations among iterations per-
formed to identify respective search targets for a plural-
ity of preceding grover search processes.

6. The computer program product of claim 5, wherein
performing the first iterative grover search process comprises
identifying a first number of iterations performed to identify
the first search target; and

wherein performing the second iterative grover search pro-

cess comprises causing the quantum computer to per-
form the second series of grover searches without per-
forming the first number of iterations.

7. The computer program product of claim 5, wherein
performing the second iterative grover search process further
comprises causing the quantum computer to perform a third
iterative grover search process using a reinitialized number of
iterations responsive to failure to find the second search target
after reaching a predetermined bound on the number of itera-
tions.

8. The computer program product of claim 5 wherein
respective numbers of iterations of each of the first and sec-
ond iterative grover search processes vary according to a
predetermined function for each succeeding one of the first
and second series of grover searches, respectively.
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9. A system, comprising:
a quantum computer; and
a memory coupled to the quantum computer and compris-
ing computer readable program code embodied in the
memory that when executed by the quantum computer
causes the processor to perform operations comprising:

performing a first iterative grover search process by caus-
ing a quantum computer to perform a first series of
grover searches according to a characteristic function
comprising a first grover iterate for varying numbers of
iterations to identify a first search target;

for each respective one of the first series of grover searches

performing operations as follows:
determining a first series number of iterations;
performing the respective one of the first series of grover
searches using the first grover iterate when the first
series number of iterations does not exceed a first
maximum total number of iterations; and
terminating the respective one of the first series of grover
searches when the first series number of iterations
exceeds the first maximum total number of iterations;
modifying the characteristic function according to the first
search target so as to remove the first search target as a
target subject from subsequent grover searches; and
performing a second iterative grover search process by
causing the quantum computer to perform a second
series of grover searches according to the characteristic
function that was modified and comprising a second
grover iterate for varying numbers of iterations to iden-
tify a second search target;

for each respective one of the second series of grover

searches performing operations as follows:

determining a second series number of iterations based
on iterations performed for the first series of grover
searches;

performing the respective one of the second series of
grover searches using the second grover iterate when
the second series number of iterations does not exceed
a second maximum total number of iterations; and

terminating the respective one of the second series of
grover searches when the second series number of
iterations exceeds the second maximum total number
of iterations;

wherein each of the first and second iterative grover search

processes use one of incrementally increasing and
decreasing numbers of iterations for each succeeding
one of the first and second series of grover searches,
respectively; and

wherein performing the second iterative grover search pro-

cess comprises causing the quantum computer to per-
form the second series of grover searches with the sec-
ond series number of iterations determined based on a
minimum number of iterations among iterations per-
formed to identify respective search targets for a plural-
ity of preceding grover search processes.

10. The system of claim 9, wherein performing the first
iterative grover search process comprises identifying a first
number of iterations performed to identify the first search
target; and

wherein performing the second iterative grover search pro-

cess comprises causing the quantum computer to per-
form the second series of grover searches without per-
forming the first number of iterations.

11. The system of claim 9, wherein performing the second
iterative grover search process further comprises causing the
quantum computer to perform a third iterative grover search
using a reinitialized number of iterations responsive to failure
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to find the second search target after reaching a predetermined
bound on the number of iterations.

12. The system of claim 9, wherein respective numbers of
iterations of each of the first and second iterative grover
search processes vary according to a predetermined function 5
for each succeeding one of the first and second series of
grover searches, respectively.
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